חAMIBIA UחIVERSITY
 OF SCIEMCE AMD TECHOOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER

EXAMINER(S)	Prof Dipti R Sahu
MODERATOR:	Prof S. C. Ray

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS
 Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1

1.1 A battery giving a constant voltage of $\mathrm{E}(\mathrm{t})=40 \mathrm{~V}$ is connected in series to a resistor of resistance 20Ω and an inductor of inductance 1 H . If the initial current in the circuit, is $\mathrm{I}(0)=3 \mathrm{~A}$.
1.1.1 Write the differential equation satisfying above condition
1.1.2 Solve the formulated differential equation and find the current after t seconds.
1.2 Find the particular solution of $\left(\cos x-x \sin x+y^{2}\right) \mathrm{d} x+2 x y \mathrm{~d} y=0$ that satisfies the initial conditions $\mathrm{y}=1$ when $x=\pi$

1.3 Solve $\left(y^{2}-1\right) y^{\prime}=4 x y^{2}$

Question 2

2.1 Solve $y^{\prime \prime}-4 y=x e^{x}+\operatorname{Cos} 2 x$
2.2 A spring with a mass of 2 kg has natural length 0.5 m . A force of 25.6 N is required to maintain it stretched to a length of 0.7 m . If the spring is stretched to a length of 0.7 m and then released with initial velocity zero
2.2.1. What is the value of spring constant
2.2.2. Formulate the differential equation and find the position of the mass at any time t.

Question 3

3.1

Given the system

$$
\begin{gather*}
x-2 y+3 z=3 \\
4 x+y-z=2 \\
2 x+3 y-5 z=-1 \tag{3}
\end{gather*}
$$

3.1.1. Identify the column vectors as V_{1}, V_{2}, V_{3}
3.1.2. Find the the superposition coefficients.
3.1.3 Express column vectors as a superposition of the V's.
3.2 Find the eigenvectors of the matrix A given as

$$
A=\left(\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right)
$$

3.3 Find the adjoint of matrix A

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

4.1 Verify that the functions $f_{1}(x)=1, f_{2}(x)=\sin x$, and $f_{3}(x)=\cos x$ are orthogonal
in $[-\pi, \pi]$, and use them to construct an orthonormal set of functions in $[-\pi, \pi]$
4.2 Determine the first three Hermite polynomials from the generating formula

$$
H_{n}(y)=(-1)^{n} e^{+y^{2}} \frac{d^{n}}{d y^{n}} e^{-y^{2}}
$$

4.3 What is Gram-Schmidt Orthogonalization Process, explain it mathematically

